Appendix C: Full torch
API Reference Crosswalk¶
“All the power. One list.”
Module | Link | Description |
---|---|---|
torch.Tensor |
https://pytorch.org/docs/stable/tensors.html | Core data structure |
torch.nn |
https://pytorch.org/docs/stable/nn.html | Layers, loss functions, model building |
torch.nn.functional |
https://pytorch.org/docs/stable/nn.functional.html | Stateless functional ops |
torch.autograd |
https://pytorch.org/docs/stable/autograd.html | Gradient tracking, custom ops |
torch.cuda |
https://pytorch.org/docs/stable/cuda.html | GPU support, memory info |
torch.utils.data |
https://pytorch.org/docs/stable/data.html | Dataset, DataLoader, Samplers |
torch.special |
https://pytorch.org/docs/stable/special.html | Advanced math functions (gamma, digamma, etc.) |
torch.fft |
https://pytorch.org/docs/stable/fft.html | Frequency transforms (fft, rfft, fft2, etc.) |
torch.linalg |
https://pytorch.org/docs/stable/linalg.html | Modern linear algebra tools |
torch.profiler |
https://pytorch.org/docs/stable/profiler.html | CPU/GPU performance profiling |
torch.onnx |
https://pytorch.org/docs/stable/onnx.html | Exporting to ONNX format |
torch.jit |
https://pytorch.org/docs/stable/jit.html | Scripting & tracing models for speed/export |
torchvision.transforms |
https://pytorch.org/vision/stable/transforms.html | Image preprocessing |
torch.utils.tensorboard |
https://pytorch.org/docs/stable/tensorboard.html | Training visualizations |