Skip to content

Table of Contents

Vision in Code: Mastering Convolutional Neural Networks for Real-World Image Modeling

A Practical Guide to CNN Implementation with PyTorch and TensorFlow


Contents


πŸ“– Preface


Part I – Foundations of Image Tensors and Preprocessing

     Chapter 1: How a Neural Network Sees an Image

        1.1 What is an image (JPEG, PNG, etc.) in memory?

        1.2 From pixel data β†’ NumPy array β†’ Tensor

        1.3 RGB channels, 8-bit scale, float conversion

        1.4 [H, W, C] vs [C, H, W] β€” framework differences explained

        1.5 Why model input shape matters

        1.6 Visual walkthrough of image-to-input pipeline

     Chapter 2: What is a Tensor (in Code and in Mind)?

        2.1 Tensor shapes and memory layout

        2.2 Dimensionality intuition

        2.3 PyTorch: torch.tensor, .permute(), .view(), .reshape()

        2.4 TensorFlow: tf.Tensor, .reshape(), .transpose(), broadcasting

        2.5 Visual walkthroughs of shape manipulations

     Chapter 3: From Pixels to Model Input

        3.1 Full image input pipeline:

        3.2 RGB loading β†’ float32 conversion β†’ normalization

        3.3 Resizing and reshaping to expected input size

        3.4 Batch dimension handling: unsqueeze() vs expand_dims()

        3.5 Feeding tensors into Dense or Conv2D layers

        3.6 Debugging mismatched shapes

        3.7 Framework comparison of entire image β†’ tensor β†’ model flow


Part II – Preprocessing and Input Pipelines

     Chapter 4: Standard Image Preprocessing

        4.1 Resize, Normalize, Augment

        4.2 Mean-std normalization vs 0–1 scaling

        4.3 Format mismatches and their impact on accuracy

        4.4 PIL vs OpenCV vs tf.image

        4.5 Visualizing preprocessing effects

        4.6 Matching preprocessing between training and inference

     Chapter 5: Preprocessing for Pretrained Models

        5.1 Matching pretrained model expectations: MobileNetV2, EfficientNet, ResNet, etc.

        5.2 transforms.Normalize vs tf.keras.applications.*.preprocess_input()

        5.3 PyTorch: torchvision.models

        5.4 TensorFlow: keras.applications

        5.5 Inference vs training preprocessing pitfalls

        5.6 Side-by-side code snippets for each model

     Chapter 6: Image Datasets: Getting Data Into the Network

        6.1 Folder structure conventions

        6.2 PyTorch: Dataset, DataLoader, ImageFolder, transforms

        6.3 TensorFlow: tf.data.Dataset, image_dataset_from_directory()

        6.4 Label mapping, batching, and shuffling

        6.5 Visualizing batches from both frameworks

     Chapter 7: Data Augmentation Techniques (Expanded)

        7.1 Common augmentations: RandomCrop, ColorJitter, Cutout

        7.2 Advanced augmentations: Mixup, CutMix (optional)

        7.3 PyTorch: torchvision.transforms

        7.4 TensorFlow: tf.image, Keras preprocessing layers

        7.5 Before/after visualization of augmentation effects


Part III – CNN Architectures and Concepts

     Chapter 8: Understanding CNN Layers

        8.1 Kernels, filters, channels, strides, padding

        8.2 Pooling (Max, Average), ReLU, BatchNorm

        8.3 PyTorch: nn.Conv2d, nn.MaxPool2d, nn.BatchNorm2d, etc.

        8.4 TensorFlow: Conv2D, MaxPooling2D, BatchNormalization, etc.

        8.5 Conceptual breakdown + syntax comparison

     Chapter 9: The CNN Vocabulary (Terms Demystified)

        9.1 Key terms: kernel, convolution, stride, padding

        9.2 Input/output channels, feature maps

        9.3 Convolutional layer vs residual block

        9.4 Layer variants: ReflectionPad2d, InstanceNorm2d, AdaptiveAvgPool2d

        9.5 Visual and code-based examples

     Chapter 10: Writing the forward() / call() Function

        10.1 PyTorch: forward(), self.features, self.classifier

        10.2 TensorFlow: call(), subclassing Model

        10.3 Layer-by-layer flow visualized

        10.4 Common mistakes in model building

     Chapter 11: Model Summary and Parameter Inspection

        11.1 PyTorch: model.parameters(), summary(), state_dict()

        11.2 TensorFlow: .summary(), get_weights(), trainable_variables

        11.3 How to freeze/unfreeze layers for fine-tuning

     Chapter 12: Building Your First CNN: Patterns and Pitfalls

        12.1 Simple architectures: LeNet-style, Mini-VGG

        12.2 Choosing filter sizes, kernel shapes, stride

        12.3 Stacking layers: when and why

        12.4 Common design mistakes (too few filters, wrong input shape, etc.)


Part IV – Training and Fine-Tuning

     Chapter 13: Loss Functions and Optimizers

        13.1 PyTorch: loss_fn(), .backward(), optimizer.step()

        13.2 TensorFlow: GradientTape, optimizer.apply_gradients()

        13.3 Common losses: CrossEntropy

        13.4 Optimizers: SGD, Adam

        13.5 Visualizing gradient flow

     Chapter 14: Training Loop Mechanics

        14.1 PyTorch: full training loop with train_loader

        14.2 TensorFlow: model.fit() vs custom training loop

        14.3 Logging loss and metrics

        14.4 Checkpoint saving, early stopping

        14.5 Adding visuals for debugging and learning

     Chapter 15: Training Strategies and Fine-Tuning Pretrained CNNs

        15.1 When to Fine-Tune vs Freeze

        15.2 Adapting Pretrained Models

        15.3 Regularization Techniques

        15.4 Training Strategies for Generalization

        15.5 Recognizing Overfitting and Underfitting


Part V – Inference, Evaluation, and Visual Debugging

     Chapter 16: Train vs Eval Mode

        16.1 PyTorch: model.train(), model.eval(), no_grad()

        16.2 TensorFlow: training=True/False

        16.3 Dropout and BatchNorm behavior

        16.4 Impact of mode on inference

     Chapter 17: Visualizing Feature Maps and Filters

        17.1 Getting intermediate layer outputs

        17.2 PyTorch: forward hooks, manual slicing

        17.3 ensorFlow: defining sub-models

        17.4 Visualizing what the model is focusing on


Part VI – Deployment-Ready Insights

     Chapter 18: Inference Pipeline Design

        18.1 Keeping preprocessing consistent (train vs inference)

        18.2 Reusable preprocess functions

        18.3 Input validation, test-time augmentation

     Chapter 19: Common Errors and How to Debug Them

        19.1 Model always predicts one class? Check normalization

        19.2 Input shape mismatch? Check dataloader

        19.3 Nothing’s working? Try a single image pipeline

        19.4 Debugging checklist for CNN-based models


Appendices

A. PyTorch vs TensorFlow Cheatsheet

B. Troubleshooting Image Model Failures

C. Glossary of Key Terms

D. Pretrained Model Reference Table (with links)

E. Sample Projects and Mini-Exercises per Chapter


Chapter Format

Each chapter ends with:

  • Conceptual Breakdown

  • PyTorch Implementation

  • TensorFlow Implementation

  • Framework Comparison Table

  • Use Case or Mini-Exercise