Skip to content

Chapter 3: Setting Up Your AI/ML Project Repository

3.1 Why Structure Matters

Before you write a single line of code, a well-organized project structure will help you:

  • Avoid messy code and deployment chaos.

  • Easily integrate APIs, models, and UIs.

  • Keep frontend/backend separate for clean DevOps.

  • Make it GitHub-ready and team-collaboration friendly.

  • Smoothly deploy on Hugging Face, Railway, or Vercel.

Goal: Create a modular structure that can be reused for any of your future AI/ML projects: Chatbots, Meme Generators, Cartoonizers, etc.


For Fullstack AI Projects (Frontend + Backend + Model/API):

your_project/
│
├── frontend/                # React or Gradio UI   ├── public/
│   ├── src/
│   ├── .env                 # API_URL for backend   └── package.json
│
├── backend/                 # FastAPI or Flask logic   ├── app/
│      ├── main.py          # Main API logic      ├── model/           # Pretrained model / inference      └── utils.py         # Preprocessing, postprocessing   ├── .env                 # API keys (OpenAI, Replicate)   ├── requirements.txt
│   └── Dockerfile           # Optional for deployment
│
├── README.md                # Project overview
├── .gitignore               # Avoid committing secrets / venv
└── railway.toml             # If deploying to Railway (optional)

For Gradio-only apps, you can simplify this to:

your_project/
├── app.py
├── model/
├── assets/
├── requirements.txt
 └── README.md


3.3 Initializing the Project (Backend First)

mkdir your_project && cd your_project
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate
pip install fastapi uvicorn transformers openai python-dotenv
pip freeze > requirements.txt

Inside backend/app/main.py:

from fastapi import FastAPI
from pydantic import BaseModel
import os
from dotenv import load_dotenv
load_dotenv()
API_KEY = os.getenv("OPENAI_API_KEY")
app = FastAPI()
class Request(BaseModel):
    prompt: str
@app.post("/generate")
def generate(request: Request):
    # Your inference logic using API or model
    return {"output": f"Received: {request.prompt}"}

3.4 Setting Up the Frontend (React Example)

  cd frontend
  npx create-react-app .
  npm install

Update .env in frontend:

  REACT_APP_API_URL=https://your-backend-api-url.com

Update App.js to call backend:

fetch(`${process.env.REACT_APP_API_URL}/generate`, {
  method: "POST",
  headers: { "Content-Type": "application/json" },
  body: JSON.stringify({ prompt: userInput }),
})
  .then((res) => res.json())
  .then((data) => setResponse(data.output));


3.5 Managing Secrets Safely

backend/.env

  OPENAI_API_KEY=sk-xxxxxxxxxx
  REPLICATE_API_TOKEN=r8_abc...

.gitignore

  venv/
  __pycache__/
  *.pyc
  .env
  frontend/node_modules/
  frontend/.env

Never push .env or .safetensors to GitHub. Use Hugging Face secrets or Railway dashboard instead for deployments.


3.6 Preparing for Deployment

Platform Setup Step Tip
Hugging Face Push to main.py or app.py Use gr.Interface() or FastAPI
Railway Connect repo, auto-deploy Add start="uvicorn app.main:app" in pyproject.toml
Vercel (frontend) Link GitHub → Auto deploy Don’t forget .env for API URL

3.7 Checklist: Ready for GitHub + Deployment?

  • Clean folder structure

  • Working backend (/generate, /predict)

  • API key hidden in .env

  • Frontend calling backend with fetch()

  • .gitignore in place

  • README.md added

  • Pushed to GitHub


Chapter Summary

By the end of this chapter, your project is:

  • Organized and modular.

  • Ready for local testing and frontend integration.

  • Protected from API key leaks.

  • Just a few commands away from being deployed!